
RNN Demo
1. Load in training data (25000 IMDb reviews)
2. Do a 80/20 split of the training data into:

- proper training data (20000 reviews)
- validation data (5000 reviews)

3. Convert each proper training review into tokens using spaCy
(the demo was updated so that after spaCy’s tokenization, we
convert each token to lowercase)

train_dataset

proper_train_dataset
val_dataset

list of length-2 tuples
each containing

(review, label 0 or 1)

"Master cinéaste Alain Resnais likes to work with those
actors"

['master', 'cinéaste', 'alain', 'resnais', 'likes', 'to',
'work', 'with', 'those', 'actors']

(using the new
tokenizer_lowercase function)

4. Build a vocabulary using the proper training reviews vocab

behaves like a function (input: list of strings, output: list of integers)

2. Do a 80/20 split of the training data into:
- proper training data (20000 reviews)
- validation data (5000 reviews)

3. Convert each proper training review into tokens using spaCy
(the demo was updated so that after spaCy’s tokenization, we
convert each token to lowercase)

proper_train_dataset
val_dataset

"Master cinéaste Alain Resnais likes to work with those
actors"

['master', 'cinéaste', 'alain', 'resnais', 'likes', 'to',
'work', 'with', 'those', 'actors']

(using the new
tokenizer_lowercase function)

4. Build a vocabulary using the proper training reviews vocab

behaves like a function (input: list of strings, output: list of integers)

5. Compute each proper training review’s encoded version

[1259, 59266, 11261, 16475, 1225, 7, 171, 20, 162, 169]

(using the vocab function)

proper_train_dataset_encoded list of length-2 tuples each containing
(encoded review, label 0 or 1)val_dataset_encoded

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Time steps

Data point

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.g., zeros)

6. Construct neural net (instead of nn.Sequential, we make a
class that inherits from nn.module)

PyTorch convention: the forward function specifies how a neural
net actually processes a batch of input data

The neural net we constructed has a
forward function with two inputs:
- a 2D table
 (each column is for 1 data point)
- a 1D table
 (specifies length for each time series)

proper_train_dataset_encoded list of length-2 tuples each containing
(encoded review, label 0 or 1)val_dataset_encoded

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Time steps

Data point

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.g., zeros)

The neural net we constructed has a
forward function with two inputs:
- a 2D table
 (each column is for 1 data point)
- a 1D table
 (specifies length for each time series)

Data types matter in PyTorch (torch.long means these tables store integers)

values from the 5 time series
Gray entries contain

padded values (e.g., zeros)

Data types matter in PyTorch (torch.long means these tables store integers)

7. Train the neural net some max number of epochs

8. Automatically tune on one hyperparameter:
choose # of epochs to be the one achieving highest validation accuracy

9. Load in the saved neural net from the best # of epochs

10. Finally load in test data, tokenize and convert each test review into
a list of integers, and use the trained neural net to predict

A special kind of RNN: an “LSTM”

(Flashback) Vanilla ReLU RNN

for input in input_sequence:

current_state = output

outputs = []

outputs.append(output)

current_state = np.zeros(num_nodes)

linear = np.dot(input, W.T) + b \

 + np.dot(current_state, U.T)

For simplicity, in today’s lecture, we only use the very last time step’s output

In general: there is an output at every time step

output = np.maximum(0, linear) # ReLU

RNN layerTime series

output prediction

… …

Time 0

Time 1

Time 2

output prediction 1

output prediction 0

output prediction 2

… …

Time 0

Time 1

Time 2

output prediction 1

output prediction 0

output prediction 2

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

outputs[t]
= np.maximum(np.dot(input_sequence[t], W.T)
 + np.dot(outputs[t-1], U.T)
 + b, 0)

Vanilla RNN tends to
forget things quickly

…

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Long-term memory
updater

Called a “long short-term
memory” (LSTM) RNN

Remembers things longer
than vanilla RNN

Analyzing Times Series with CNNs
• Think about an image with 1 column, and where the rows index

time steps: this is a time series!
• Think about a 2D image where rows index time steps, and the

columns index features: this is a multivariate time series (feature
vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

• If your time series data all have the same length (same number of
time steps) and do not have long-range dependencies that require
long-term memory, CNNs can do well already!
⇒ If you need long-term memory or time series with different

lengths, use RNNs
• Note: while it is possible to have a CNN take in inputs that vary in

size, we did not cover this in lecture

95-865 Unstructured Data Analytics

Slides by George H. Chen

Last lecture: Additional deep learning
topics; course wrap-up

HW2 Questionnaire (1/3)

HW2 Questionnaire (2/3)
Free response comments/feedback
• Reading material and notes:

• I realize that the current situation is not great
(i.e., there’s no single textbook/easy to understand resource
that covers all the topics of 95-865 at the same level of detail)

• Many students said they use StatQuest

• I got several requests from students saying that they wish I
provided problems like the ones from your real quizzes
• This is precisely why we provide many practice quizzes

— these are real past quizzes!

• There was a comment saying that asking ChatGPT to explain
concepts has been very helpful and that, basically, ChatGPT’s office
hours slots are 24/7 (nice!)
• Careful! ChatGPT had a high error rate on Quiz 1 Problem 1

HW2 Questionnaire (3/3)
• A number of students are still asking for more demos

• As I stated in Lecture 11 (in my thoughts on the HW1
questionnaire): it’s important that you learn to not only find
other demos yourself but to create your own demos

• I think it’s important to recognize that getting better at data
analysis (unstructured or not) requires practice

• Analogy: it’s like learning how to swim
• Sure, you can watch more and more demonstrations of

people swimming, but to get good yourself, you have to practice

• For example, start with a demo that already exists using a
dataset you find interesting, and think about other possible
analyses that you can do on the same dataset
• In fact, a number of demos from my lectures are like this

where I have cited the original demo that I modified

Faculty Course Evaluations
Please fill out faculty course evaluations to provide feedback on the course!

Let’s get these response rates higher! 😃

Outline

• How learning a deep net roughly works

• Dealing with small datasets

• Course wrap-up

• Data augmentation
• Fine-tuning

• Self-supervised learning (word embeddings are a special case)

• Some other deep learning topics that are good to know about

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of good
parameter setting

The skier wants to get to the lowest point

∆L
∆w

The derivative at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative
In higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Victory!

Local minimum Better
solution

In general: not obvious what error landscape looks like!
➔ we wouldn’t know there’s a better solution beyond the hill

In practice: local minimum often good enough

Popular optimizers
(e.g., Adam, RMSProp,

Lookahead) are
variants of gradient

descent

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation

A neural net
does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Gradient: ∂
1
n

∑n
i=1 L(f2(f1(xi)), yi)

∂θ

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

average loss

compute gradient

We have to compute lots
of gradients to help the
skier know where to go!

Computing gradients using
all the training data seems

really expensive!
and move skier

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

An epoch refers to 1 full pass through
all the training data

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

compute gradient
and move skier

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

compute gradient
and move skier

Batch size: how many
training examples we

consider at a time
(in this example: 2)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Best optimizer? Best learning rate? Best # of
epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than
CPU!) if you choose # epochs/batch size poorly!!!

A Look Under the Hood

UDA_pytorch_utils.py

Dealing with Small Datasets

Data Augmentation
Generate perturbed versions of your training data to get a larger

training dataset

Training label: cat
Training image Mirrored

Still a cat!
Rotated & translated

Still a cat!

We just turned 1 training example in 3 training examples

Allowable perturbations depend on data
(e.g., for handwritten digits, rotating by 180
degrees would be bad: confuse 6’s and 9’s)

Fine Tuning
If there’s an existing pre-trained neural net, you could modify it for

your problem that has a small dataset

Example: classify between Tesla’s and Toyota’s

You collect photos from the internet of both, but your dataset size is
small, on the order of 1000 images

Strategy: take pre-trained convnet (such as a state-of-the-art one like ResNet,
trained to classify between 1000 objects) and change final layers to do

classification between Tesla’s and Toyota’s

Fine Tuning

Sentiment analysis RNN demo

Text Positive/negative
sentiment

Em
be

dd
in

g

Cl
as

sifi
er

Weights here are treated as fixed & come from
pre-trained GloVe word embeddings

GloVe vectors pre-trained on massive dataset (Wikipedia + Gigaword)
IMDb review dataset is small in comparison

Word Embeddings:
Even without labels, we can set

up a prediction problem!

Hide part of training data and try to predict what you’ve hid!

Word Embeddings: word2vec

Can solve tasks like the following:

Man is to King as Woman is to Queen???

Word Embeddings: word2vec

Man is to King as Woman is to Queen

Can solve tasks like the following:

Word Embeddings: word2vec

Man is to King as Woman is to Queen

Which word doesn’t belong?
blue, red, green, crimson, transparent

Can solve tasks like the following:

Word Embeddings: word2vec

Man is to King as Woman is to Queen

Which word doesn’t belong?
blue, red, green, crimson, transparent

Can solve tasks like the following:

Word Embeddings: word2vec

Image source: https://deeplearning4j.org/img/countries_capitals.png

Word Embeddings: word2vec

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point:
“Training labels”:

epidemic
the, opioid, or, opioid

Word Embeddings: word2vec

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: or
“Training labels”: opioid, epidemic, opioid, crisis

Word Embeddings: word2vec

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: opioid
“Training labels”: epidemic, or, crisis, is

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

These are “positive” (correct)
examples of what context

words are for “opioid”

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Word Embeddings: word2vec

Predict context of each word!

Training data point: opioid
“Negative training label”: 2010s

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

randomly sampled word

Word2vec Neural Net

Linear
(# nodes = vocab size),

Softmax

Linear
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Want real context
words (e.g.,
“epidemic”, “crisis”)
to have high
probability

Learned weight matrix used
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

Word Embeddings as a Special Case of
Self-Supervised Learning

• Key idea: hide part of the training data and try to predict hidden
part using other parts of the training data

• No actual training labels required — we are defining what the
training labels are just using the unlabeled training data!

• This is an unsupervised method that sets up a supervised prediction
task

• Other word embeddings methods are possible

(Flashback)

Challenging: try to split up word into multiple
words depending on meaning (requires

inferring meaning from context)

This problem is called word sense disambiguation (WSD)

What about a word that has
multiple meanings?

Word Embeddings as a Special Case of
Self-Supervised Learning

• Key idea: hide part of the training data and try to predict hidden
part using other parts of the training data

• No actual training labels required — we are defining what the
training labels are just using the unlabeled training data!

• This is an unsupervised method that sets up a supervised prediction
task

• Other word embeddings methods are possible

• Word embedding that handles word-sense disambiguation: BERT
(to figure out embedding for word, provide sentence the word is
used in)

(Flashback) Fine Tuning

Sentiment analysis RNN demo

Text Positive/negative
sentiment

Em
be

dd
in

g

Cl
as

sifi
er

We fixed the weights here to come from
pre-trained GloVe word embeddings

GloVe vectors pre-trained on massive dataset (Wikipedia + Gigaword)
IMDb review dataset is small in comparison

(Flashback) Word2vec Neural Net

Linear
(# nodes = vocab size),

Softmax

Linear
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Want real context
words (e.g.,
“epidemic”, “crisis”)
to have high
probability

Learned weight matrix used
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

(Flashback) Word2vec Neural Net

Linear
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Learned weight matrix used
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

Turn off training

Remove final layers

(Flashback) Word2vec Neural Net

Linear
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Learned weight matrix used
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

LSTM Classifier

Turn off training

Add layers for new task we
care about (such as
sentiment analysis)

Interpreting/explaining deep nets

Visualizing What a CNN Learned
• Plot filter outputs at different layers

• Plot regions that maximally activate an output neuron

Images: Francois Chollet’s “Deep Learning with Python” Chapter 5

There are many
ways to do this!

Example: Wolves vs Huskies

Turns out the deep net learned that wolves are
wolves because of snow…

Source: Ribeiro et al. “Why should I trust you? Explaining the
predictions of any classifier.” KDD 2016.

➔ visualization is crucial!

Interpretability/Explainability: Current State of Affairs
• There are lots of “explanation” approaches that can be used after

learning a deep net to try to understand what has been learned
• Many of these are implemented in the Python package Captum

developed by Facebook/Meta: https://captum.ai/

Crop image
(many CNN’s require

image to be a specific size)

ResNet-18 (a CNN) predicts
my cat to be an “Egyptian cat” What pixels are important for prediction?

These are the answers from 3 different
explanation models (they give different answers!)

Warning: there’s a lot of debate as to how much we should actually
trust these explanations, as they can often be misleading

https://captum.ai/

Interpretability/Explainability: Current State of Affairs

• There are neural net architectures that by design are interpretable
(e.g., prototypical part networks, neural topic models, …)

• No separate explanation approach needed since model directly
provides explanation

• My opinion: if you really care about interpretability/explainability,
then you’re better off using this sort of model

Generating Fake Data That Look Real

Generate Fake Data that Look Real

Noise

Real training
example

Deep
net

Fake
training
example

Deep net
classifier Real/fakePick 1

Counterfeiter tries to get better at
tricking the cop

Cop tries to get better at telling
which examples are real vs fake

Counterfeiter Cop

Terminology: counterfeiter is the generator, cop is the discriminator

Basic version is unsupervised: generate fake data that look like training data

Example: Generative Adversarial Network (GAN)

Generate Fake Data that Look Real

Generate images of synthetic people
(StyleGAN3 by Karras et al 2021)

Generate Fake Data that Look Real

Image-to-image translation results using GANs
(Isola et al 2017, Zhu et al 2017)

Concluding Thoughts on Deep Learning
• Deep learning learns computer programs

• For example, think about how CNNs and RNNs incorporate
structure of images/time series

• How do we do lifelong learning?

• How do we automatically discover & incorporate important
problem structure?

• We have only seen simple examples of these computer
programs in this class, but the programs that can be learned are
becoming increasingly sophisticated (e.g., GPT 4.0)

• All the best ideas that lead to amazing prediction results
incorporate problem-specific structure

• How do we reason about causality?

Unstructured Data Analysis

Data

The dead body

Some times you
have to collect
more evidence!

Finding Structure InsightsQuestion

When? Where?
Why? How?
Perpetrator
catchable?

Puzzle solving,
careful analysis

The evidence

This is provided
by a practitioner Exploratory data

analysis
Answer original

question

There isn’t always a follow-up prediction problem to solve

Becoming good at data scientist requires you to think like a detective!

Much like how some murder mysteries are hard to solve, many data
analysis problems (unstructured or not) are hard to solve too!

Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try
• Come up with quantitative metrics that make sense for your

problem, and use these metrics to evaluate models (think about
how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:
• Manually obtain labels (either you do it or crowdsource)
• Set up “self-supervised” learning task

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting results in
the context of your original problem!

• There is a lot we did not cover — keep learning!

Want to Learn More?

• One of the best ways to learn material is to teach it!
Apply to be a TA for me next term!

• Natural language processing (analyze text): 11-611

• Machine learning with large datasets: 10-605

• Computer vision (analyze images): 16-720
• Deep learning: 11-785, 10-707
• Deep reinforcement learning: 10-703
• Math for machine learning: 10-606, 10-607
• Intro to machine learning at different levels of math:

10-601, 10-701, 10-715

• Some courses at CMU:

